Ultrafast mid-infrared 1s intraexcitonic spectroscopy in monolayer MoS₂

Soonyoung Cha¹, Ji Ho Sung^{2,3}, Sangwan Sim¹, Hoseok Heo^{2,3}, Moon-Ho Jo^{2,3}, and **Hyunyong Choi^{1,*}**

¹School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
²Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
³Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH),

Pohang 790-784, Korea

*hychoi@yonsei.ac.kr

Abstract

Ultrafast optical Photogenerated electron-hole pairs in solids create bound states whose elementary quasiparticle state is called 1*s* exciton in a Wannier-Mott exciton model. Above the fundamental 1*s* exciton, recent visible and near-infrared investigations revealed the excited excitons are much richer, exhibiting a series of Rydberg-like states [1,2]. Probing internal transition between these non-hydrogenic series, however, demand a fundamentally different experimental tool, capable of probing optical transitions from 1*s* "bright" to *np* "dark" states [3,4]. Here, we employed ultrafast mid-infrared spectroscopy to explore the 1*s*-intraexcitonic transitions in monolayer MoS₂ [5]. As shown in Fig. 1, we observed two-folded 1*s* \rightarrow 3*p* intraexcitonic transitions within A and B exciton and the 1*s* \rightarrow 2*p* transition between A and B exciton. Our time-resolved analysis revealed that it takes about 0.7 ps for the 1*s* A exciton before reaching quasi-equilibrium whose characteristic time is associated with a rapid population transfer from the 1*s* B exciton. Our experiment, otherwise hidden in linear or nonlinear spectroscopy, may provide a second look for understanding the many-body exciton dynamics in two-dimensional materials.

References

[1] D. Y. Qiu et al., Phys. Rev. Lett. 111 (2013) 216805.

- [2] A. Chernikov et al., Phys. Rev. Lett. 113 (2014) 076802.
- [3] R. A. Kaindl et al., Nature 423 (2003) 734-738.
- [4] C. Poellmann et al., Nat. Mater. 14 (2015) 899-893.
- [5] S. Cha et al., Nat. Comm. accepted for publication (2016).

Figures

Figure 1. (a) Energy diagram of the excitonic Rydberg series in MoS₂. (b) transient band-to-band dynamics probed y 1.86 photon energy. (c-e) Transient dynamics of the intraexcitonic transition for each three oscillator are shown at each row: (c) $1_{S,A} \rightarrow 3p_{A}$, (d) $1_{S,B} \rightarrow 3p_{B}$, and (e) $1_{S,A} \rightarrow 2p_{B}$, respectively. Dashed lines show the maximum peak for each intraexcitonic transition.